
www.manaraa.com

Adv. Geosci., 45, 383–387, 2018
https://doi.org/10.5194/adgeo-45-383-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Opportunities and limitations of software project management
in geoscience and climate modelling
Nadine Wieters and Bernadette Fritzsch
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany

Correspondence: Nadine Wieters (nadine.wieters@awi.de)

Received: 30 June 2018 – Revised: 26 November 2018 – Accepted: 5 December 2018 – Published: 20 December 2018

Abstract. In this paper, recent software project management
tools and their possible advantages, disadvantages, and pos-
sible limitations will be discussed, with respect to their ap-
plication in scientific projects in geoscience and climate sci-
ence.

1 Introduction

During the last decades, the general process of software de-
velopment has strongly improved. In the industry, software
engineering methods like version control systems and issue
tracking are now indispensable to the everyday work of a
software developer as well as agile and test driven software
development and continuous integration. Somewhat differ-
ent is the situation in science. Here, modern methods of soft-
ware development have not yet been introduced everywhere,
whereby the various scientific disciplines have a different sta-
tus. Even within the disciplines, the knowledge about meth-
ods and tools is very different. For example, geoscientists
already have advanced areas (such as geoinformatics) and
some of the complex model codes are successfully man-
aged today using software engineering methods (e.g. FE-
SOM, Wang et al., 2014; ICON, Giorgetta et al., 2018). But
from our experience, in too many other projects, too little at-
tention is paid to software development practise. Therefore,
in this paper, we especially want to make project managers
aware of some aspects of software development and show
how modern methods can help to successfully make software
development a part of the project.

2 Software development in the scientific context

Scientific software and its development is of great impor-
tance in scientific research (Hannay et al., 2009; Hettrick
et al., 2015). In geoscience as well as in climate science, re-
search software (in the form of developed program code) is
an integral part or even the basis of research in many fields
and in many projects.

As the complexity of such research software and pro-
gram code is increasing, also the development of the pro-
gram code is getting more complex, especially when devel-
oped and used in larger interdisciplinary groups. One way
to deal with these issues is to use software engineering con-
cepts and tools which can help to improve the whole process
of software development and software project management.
Although there are software engineering tools that are al-
ready well established in general software development, such
concepts and tools are underused in research software devel-
opment so far. The question arises, whether recent software
engineering tools and developing concepts can also improve
the work on research software in geoscience. Are such tools
and concepts as applicable as in general software projects?
Or are research software projects different in the sense that
they hold certain characteristics, which makes it difficult or
even impossible to establish common software engineering
tools and concepts?

Hannay et al. (2009) did a survey to find out how scien-
tists develop and use scientific software. Some of the main
findings that are relevant for our study can be summarized as
follows:

– 84.3 % of the scientists state that the development of
scientific software is important for their research;

– 96.6 % state that their knowledge about software devel-
opment comes from self studies;

Published by Copernicus Publications on behalf of the European Geosciences Union.

www.manaraa.com

384 N. Wieters and B. Fritzsch: Software project management in climate modelling

– a notable number of scientists are not familiar with stan-
dard software engineering concepts;

– the importance of software engineering concepts is
rated as high, especially in large projects.

In a more recent study, Johanson and Hasselbring (2018)
have investigated key characteristics of scientific software
development in computational science. They found a num-
ber of reasons for the low prevalence of software engineering
methods in the scientific field:

– software requirements are not known up front;

– scientific software in itself has no value but still it is
long-lived;

– little code re-use;

– only few scientists are trained in software engineering;

– disregard of most modern software engineering meth-
ods;

– overly formal software processes restrict research.

In our view, one key point is that most research software de-
velopers are not formally trained in software development
methods and so, they are often not aware of recent software
engineering tools and concepts. In addition, after our experi-
ence in geoscience, software development in projects is usu-
ally just a means to achieve the project’s goal and not the
goal itself. This sometimes leads to software development
not getting the necessary importance in the project planning
and that the necessary methods are not considered as crucial.
This may lead to scarce incentives for high quality software
development (unfortunately including documentation). Since
the development process is not seen as a crucial task, the
general work of software development is sometimes lacking
in acknowledgement. Every effort that is spend in software
management tools is rated as extra work and not be consid-
ered as an improvement of the development process.

Increasing lifecycles of climate models and data analysing
tools, beyond the lifetime of computers, as well as increas-
ing complexity of the overall development process require
new development strategies. They must ensure that the de-
veloped software remains maintainable even after the project
has finished with reasonable effort. Otherwise, there is a risk
that the following projects that build on this software, have
to deal repeatedly with maintenance procedures that require
additional resources and hinder their project progress. In ad-
dition, development tools can add value by helping scien-
tists to ensure reproducibility. Scientific work is fundamen-
tally based on the fact that the results obtained can be reli-
ably reproduced. For computational science this means that
the computer simulations can be repeated using the identi-
cal code. With ever-evolving complex software with many
lines of code, identifying the exact version for a numerical

experiment can become complicated. Here, the version con-
trol, which will be discussed in more detail in the following,
can help.

In the following section, we will present two software
management tools that are widely used in general software
development. We will point out how these tools can improve
the above stated characteristics of research software devel-
opment and what may be the hurdles of its establishment in
geoscience.

3 Software project management in research software
development

Driven by the experience of major software projects in the
industry, software engineering has developed a variety of
methods with different objectives. Among other things, they
should ensure the quality of the created software as well as
its maintainability throughout the entire lifecycle, enhance
its reusability and reduce the time of delivery. They improve
the work and coordination in distributed developer teams. In
the following section, we will discuss two examples of soft-
ware engineering tools: (i) version control systems (VCS),
as a software development tool, and (ii) agile software de-
velopment, as an example for a more strategic development
method. Taking these examples, we describe how such tools
can be integrated in the development process of scientific
software development in geosciences and climate sciences.

3.1 Version control systems

To a large extent, research software is developed not only
by individual scientists, but is the common task of a larger
team of developers; some of which are working at the same
time at different locations. For such a collaborative work, ev-
ery developer must always know exactly what changes were
made by the other collaborators and that they might influ-
ence his or her work. Version control systems (VCS) manage
complex projects with many contributors. They track differ-
ent states of a software and always support the restoration of
defined versions of the software. The scientist can repeat the
numerical experiment or the data evaluation with exactly the
same software version and thus prove the reproducibility of
the results. VCS are therefore not only beneficial for collabo-
rating teams, but also for the individual developer, since they
improve the collaboration with the future self (Bowers and
Voors, 2016).

First version control systems have been developed in the
1970s, where they initially helped with the administration
of the Unix system by protocolling changes in configuration
files etc. (Rochkind, 1975) and developing operational sys-
tems. Later its field of application extended to every kind of
files and documents and especially to software code. They
fulfil several tasks. Changes are logged so that it is possible
to understand who did what and when. Previous states can be

Adv. Geosci., 45, 383–387, 2018 www.adv-geosci.net/45/383/2018/

www.manaraa.com

N. Wieters and B. Fritzsch: Software project management in climate modelling 385

restored so that accidental changes or unsuccessful attempts
can be reversed. All states are archived. This makes it pos-
sible to access all versions. Collaborative and shared access
to the files from multiple developers will be coordinated and
it will immediately alert to conflicting actions. Modern ver-
sion control systems also support the simultaneous work on
several development branches of a project and thus allow si-
multaneous progress in various subtasks.

When a model is co-developed by several scientists, a VCS
is essential to make coding efficient and to avoid conflict
through concurrent and conflicting changes. However, this
often requires a fundamental change in the individual work-
flow of the developing scientists. Changes to the code must
be checked in continuously for the system to perform its
function. In some cases, the fact that the work of each devel-
oper is visible, also in unready stages, may mean a psycho-
logical hurdle that must first be overcome. Besides the issues
that can be improved by VCS, as stated above, it is impor-
tant to establish best practices how a VCS is integrated in the
process of development. The development team must agree
together on appropriate ways of working with a VCS. Only
then, the opportunities of this tool can be fully exploited and
the development can be improved.

For the scientific sector, open source solutions of ver-
sion control systems play an important role, especially Git
(https://git-scm.com, last access: 13 December 2018) and the
older Subversion (SVN) (Fitzpatrick et al., 2004). In particu-
lar, Git has become widely used in recent years, as repository
hosting services like GitHub (https://github.com, last access:
13 December 2018) or GitLab (https://about.gitlab.com, last
access: 13 December 2018) have become more user-friendly
and offer many additional features (e.g. issue tracking, wiki,
continuous integration) besides pure code management.

3.2 Agile software development

A mainly linear approach of software development, like the
so-called waterfall model, is based on discrete phases of anal-
ysis, design, coding and testing. The phases build on each
other and are carried out in a predetermined sequence. Char-
acteristic of this approach is the consistent implementation of
the previously planned steps. Thus it has a high level of plan-
ning security. However, it carries the risk that later changes
in the requirements can be taken into account only with great
difficulty or huge effort.

As already mentioned in Sect. 2, the software require-
ments in scientific projects are often unclear at the start.
This entails risks in the implementation of a waterfall model.
Since the requirements for the software change, according
to the iterative procedure that is usual in the scientific con-
text, an agile procedure is appropriate (see also Easterbrook
and Johns, 2009), which allows adapting quickly to changes.
Many agile methods and practices have evolved from the
foundations of the Manifesto for Agile Software Development
(http://agilemanifesto.org/, last access: 13 December 2018).

They are characterized by a continuous comparison of the
expectations to the actual state of the software under devel-
opment. Thus, they offer a higher flexibility. A prominent
representative of the agile software development is Scrum
(https://www.scrum.org, last access: 13 December 2018),
which will be briefly described in the following.

The properties of the software are formulated from the
user’s point of view and recorded and prioritized in a Prod-
uct Backlog by the Product Owner. These requirements are
gradually being implemented by the Development Team in
relatively short time intervals (so-called Sprints). The Devel-
opment Team is responsible for the delivery of the functional-
ities in the order desired by the Product Owner. It organizes
itself and decides how it works. At the end of each Sprint
there is a finished product (Product Increment). At the end
of a cycle, the product, the (possibly changed) requirements
and the procedure are reviewed and further developed in the
next Sprint. The Scrum Master is accountable for removing
impediments to the ability of the team to deliver the product
goals and deliverables and ensures that the Scrum framework
is followed.

The application of agility in a scientific project can take
place in different ways. On the one hand, agile management
often lends itself to the overall project, in which software
development is included as an integral part. Then, software
development is managed by the same principles as the other
parts of the project. On the other hand, an agile approach
in software development can be embedded as well in other
methods of overall project management. In this case, it is im-
portant that the project manager understands the specifics of
the agile method and takes them into account in the planning
of the entire project.

4 Implications for research project management

In the following section we will give some ideas concern-
ing software development that can be considered in project
management so that the above described problems can be
addressed already in the early phase of project development.
We will formulate these ideas as questions that arise for the
research software itself, infrastructure and personnel.

Regarding the research software the following questions
arise:

– Which research software is needed to achieve the
project goals?

– Are the features of the needed research software known
already and is it clear to all project members?

– Is it necessary to develop new program code or can ex-
isting research software be re-used or adapted?

– Is the development process of program code in the
project considered high enough, with enough resources
in time and personnel?

www.adv-geosci.net/45/383/2018/ Adv. Geosci., 45, 383–387, 2018

https://git-scm.com
https://github.com
https://about.gitlab.com
http://agilemanifesto.org/
https://www.scrum.org

www.manaraa.com

386 N. Wieters and B. Fritzsch: Software project management in climate modelling

– Are software engineering methods considered to be ap-
plied in the project?

The following questions are regarding resources and sup-
port for software as well as computational resources:

– Is there an infrastructure that can or should be used re-
garding certain tools, that have been agreed upon using?
E.g. which version control system is in use?

– Are all the tools that are necessary available on this sys-
tem?

– Are other tools needed, e.g. issue tracker, repository
manager, wikis (e.g. for documentation)? And is it pos-
sible to install such new tools on the system?

– Is there support available for such tools, e.g. from the
computing centre?

– Are there enough computational resources available?

Regarding personnel we would like to point to the following
issues:

– Is there a special need for certain skills, that people need
to have?

– Is it necessary to train personnel with these skills in the
project?

– Are people needed, that have experience in software en-
gineering?

– Is the knowledge about the research software and its de-
velopment spread over a group of people, or is it centred
in one person?

– Is it possible and necessary to enable and foster commu-
nication across different cultures of software engineer-
ing and computational science?

5 Ongoing activities

During the last years, the awareness for the role of research
software and its importance in the scientific process has been
increased, and was finally summarized in the slogan Better
software – better research (Goble, 2014) which is used by
the Software Sustainability Institute (https://www.software.
ac.uk/, last access: 13 December 2018) and the Research
Software Engineers Association (https://rse.ac.uk/, last ac-
cess: 13 December 2018) to point out the significance of
high quality software for science. Starting in the UK, peo-
ple in academia with expertise in programming and intri-
cate understanding of research, the so called Research Soft-
ware Engineers (RSE), are now in the process of accumu-
lating and community building. Many activities are ongoing
to found national chapters, e.g. in Germany (https://www.

de-rse.org/de/index.html, last access: 13 December 2018).
Since the quality of the software depends crucially on the ex-
isting knowledge and skills of its developers, there is a great
need for further education of the involved people. With the
Software Carpentry (https://software-carpentry.org, last ac-
cess: 13 December 2018; Wilson, 2016), there is now an ex-
tensive network of experts who share their experience and
expertise in programming and best practices.

Furthermore, several national initiatives address research
software. In Germany the Helmholtz Association imple-
mented a task group Access to and re-use of scientific soft-
ware to enforce the discussions about scientific software in
the Open Science context. The task group formulated guide-
lines and recommendations for development and publication
of scientific software that have also been presented to the
geoscience community (Fritzsch et al., 2017). On the level
of the Alliance of Science Organisations in Germany, the Pri-
ority Initiative Digital Information has a working group Re-
search Software to work out a coordinated position of all Ger-
man Science Organisations. First outcome of this working
group has been published in Katerbow and Feulner (2018).

6 Conclusions

We described some aspects of software development in geo-
science projects. From this, some conclusions can be de-
duced. Even if new software is not the primary goal of a
project, the project management has to consider the soft-
ware development as an integral part of the project from
the very beginning. In Sect. 4, we therefore proposed a
collection of questions and considerations that can be ad-
dressed in the early phase of project management, to en-
sure that the software development is taken into account
in the overall project planning. The development of high-
quality software needs time and personnel resources. Soft-
ware management tools can support and improve the devel-
opment of scientific software, but its integration in project
teams needs coordination and consensus in its way of ap-
plication. This selection and integration process needs to
be considered as part of the software development within
a project. To cope with a lack of awareness and knowl-
edge in software engineering tools high focus should be
taken on training and considered to be part of the research
project. Within the project and beyond, the exchange of
knowledge and experience between geoscientists and soft-
ware engineers should be promoted to overcome commu-
nication and cultural hurdles. To increase the emphasis of
software development within a project, high quality soft-
ware can be published in journals specialized in certain types
of research software, like Geoscientific Model Development
(https://www.geoscientific-model-development.net, last ac-
cess: 13 December 2018) for numerical Earth system mod-
els or in more general journals for software like The Journal
of Open Research Software (https://openresearchsoftware.

Adv. Geosci., 45, 383–387, 2018 www.adv-geosci.net/45/383/2018/

https://www.software.ac.uk/
https://www.software.ac.uk/
https://rse.ac.uk/
https://www.de-rse.org/de/index.html
https://www.de-rse.org/de/index.html
https://software-carpentry.org
https://www.geoscientific-model-development.net
https://openresearchsoftware.metajnl.com

www.manaraa.com

N. Wieters and B. Fritzsch: Software project management in climate modelling 387

metajnl.com, last access: 13 December 2018) or The Jour-
nal of Open Source Software (http://joss.theoj.org, last ac-
cess: 13 December 2018). This strengthens the recognition
of the development work and contributes to a further reuse of
the software, which saves resources for other projects.

Data availability. No data sets were used in this article.

Author contributions. Both authors made substantial contributions
to this publication.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue
“Project management in geosciences: systems and practices for
high-impact research”. It is a result of the EGU General Assem-
bly 2018, Vienna, Austria, 8–13 April 2018.

Acknowledgements. We thank Robert Gieseke and anonymous
reviewer for providing valuable comments. Nadine Wieters has
received funding from the Initiative and Networking Fund of
the Helmholtz Association through the project “Advanced Earth
System Modelling Capacity (ESM)”.

The article processing charges for this open-access
publication were covered by a Research
Centre of the Helmholtz Association.

Edited by: Sylvia Walter
Reviewed by: Robert Gieseke and one anonymous referee

References

Bowers, J. and Voors, M.: How to improve your relationship with
your future self, Revista de Ciencia Política (Santiago), 36, 829–
848, https://doi.org/10.4067/S0718-090X2016000300011, 2016.

Easterbrook, S. M. and Johns, T. C.: Engineering the Software for
Understanding Climate Change, Comput. Sci. Eng., 11, 65–74,
https://doi.org/10.1109/MCSE.2009.193, 2009.

Fitzpatrick, B., Pilato, C., and Collins-Sussman, B.: Version Control
with Subversion, O’Reilly, 2004.

Fritzsch, B., Bernstein, E., Castell, W. Z., Diesmann, M., Haas,
H., Hammitzsch, M., Konrad, U., Lähnemann, D., McHardy,
A., Pampel, H., Scheliga, K., Schreiber, A., and Steglich, D.:
Scientific Software – the role of best practices and recom-
mendations, in: EGU General Assembly Conference Abstracts,
vol. 19 of EGU General Assembly Conference Abstracts, 23–
28 April 2017, Vienna, p. 3294, 2017.

Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler,
S., Helmert, J., Hohenegger, C., Kornblueh, L., Köhler, M.,
Manzini, E., Mauritsen, T., Nam, C., Raddatz, T., Rast, S.,
Reinert, D., Sakradzija, M., Schmidt, H., Schneck, R., Schnur,
R., Silvers, L., Wan, H., Zängl, G., and Stevens, B.: ICON-A,
the Atmosphere Component of the ICON Earth System Model:
I. Model Description, J. Adv. Model. Earth Syst., 10, 1613–1637,
https://doi.org/10.1029/2017MS001242, 2018.

Goble, C.: Better Software, Better Research, IEEE Internet Com-
put., 18, 4–8, https://doi.org/10.1109/MIC.2014.88, 2014.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P.,
Pfahl, D., and Wilson, G.: How do scientists develop
and use scientific software?, in: 2009 ICSE Workshop on
Software Engineering for Computational Science and En-
gineering, 23 May 2009, Vancouver, BC, Canada, 1–8,
https://doi.org/10.1109/SECSE.2009.5069155, 2009.

Hettrick, S., Antonioletti, M., Carr, L., Chue Hong, N., Crouch, S.,
De Roure, D., Emsley, I., Goble, C., Hay, A., Inupakutika, D.,
Jackson, M., Nenadic, A., Parkinson, T., Parsons, M. I., Pawlik,
A., Peru, G., Proeme, A., Robinson, J., and Sufi, S.: UK Re-
search Software Survey 2014, Tech. rep., University of Edin-
burgh on behalf of Software Sustainability Institute, Edinburgh,
https://doi.org/10.7488/ds/253, 2015.

Johanson, A. and Hasselbring, W.: Software Engineering for Com-
putational Science: Past, Present, Future, Comput. Sci. Eng., 20,
90–109, https://doi.org/10.1109/MCSE.2018.021651343, 2018.

Katerbow, M. and Feulner, G.: Recommendations on the de-
velopment, use and provision of Research Software, Zenodo,
https://doi.org/10.5281/zenodo.1172988, 2018.

Rochkind, M. J.: The source code control sys-
tem, IEEE T. Softw. Eng., SE-1, 364–370,
https://doi.org/10.1109/TSE.1975.6312866, 1975.

Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wek-
erle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Ele-
ment Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an
ocean general circulation model, Geosci. Model Dev., 7, 663–
693, https://doi.org/10.5194/gmd-7-663-2014, 2014.

Wilson, G.: Software Carpentry: lessons learned [ver-
sion 2; referees: 3 approved], F1000Research, 3,
https://doi.org/10.12688/f1000research.3-62.v2, 2016.

www.adv-geosci.net/45/383/2018/ Adv. Geosci., 45, 383–387, 2018

https://openresearchsoftware.metajnl.com
http://joss.theoj.org
https://doi.org/10.4067/S0718-090X2016000300011
https://doi.org/10.1109/MCSE.2009.193
https://doi.org/10.1029/2017MS001242
https://doi.org/10.1109/MIC.2014.88
https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.7488/ds/253
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.5281/zenodo.1172988
https://doi.org/10.1109/TSE.1975.6312866
https://doi.org/10.5194/gmd-7-663-2014
https://doi.org/10.12688/f1000research.3-62.v2

www.manaraa.com

© 2018. This work is published under
https://creativecommons.org/licenses/by/4.0/(the “License”). Notwithstanding
the ProQuest Terms and Conditions, you may use this content in accordance

with the terms of the License.

	Abstract
	Introduction
	Software development in the scientific context
	Software project management in research software development
	Version control systems
	Agile software development

	Implications for research project management
	Ongoing activities
	Conclusions
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	References

